The collective dynamics of self - propelled particles
نویسنده
چکیده
We have proposed a method for the dynamic simulation of a collection of self-propelled particles in a viscous Newtonian fluid. We restrict attention to particles whose size and velocity are small enough that the fluid motion is in the creeping flow regime. We have proposed a simple model for a self-propelled particle, and extended the Stokesian Dynamics method to conduct dynamic simulations of a collection of such particles. In our description, each particle is treated as a sphere with an orientation vector p, whose locomotion is driven by the action of a force dipole Sp of constant magnitude S0 at a point slightly displaced from its centre. To simplify the calculation, we place the dipole at the centre of the particle, and introduce a virtual propulsion force Fp to effect propulsion. The magnitude F0 of this force is proportional to S0. The directions of Sp and Fp are determined by p. In isolation, a self-propelled particle moves at a constant velocity u0 p, with the speed u0 determined by S0. When it coexists with many such particles, its hydrodynamic interaction with the other particles alters its velocity and, more importantly, its orientation. As a result, the motion of the particle is chaotic. Our simulations are not restricted to low particle concentration, as we implement the full hydrodynamic interactions between the particles, but we restrict the motion of particles to two dimensions to reduce computation. We have studied the statistical properties of a suspension of self-propelled particles for a range of the particle concentration, quantified by the area fraction φa. We find several interesting features in the microstructure and statistics. We find that particles tend to swim in clusters wherein they are in close proximity. Consequently, incorporating the finite size of the particles and the near-field hydrodynamic interactions is of the essence. There is a continuous process of breakage and formation of the clusters. We find that the distribution of particle velocity at low and high φa are qualitatively different; it is close to the normal distribution at high φa, in agreement with the experimental measurements of Wu & Libchaber (2000). The motion of the particles is diffusive at long time, and the self-diffusivity decreases with increasing φa. The pair correlation function shows a large anisotropic buildup near contact, which decays rapidly with separation. There is also an anisotropic orientation correlation near contact, which decays more slowly with separation.
منابع مشابه
Nonequilibrium glassy dynamics of self-propelled hard disks.
We analyze the collective dynamics of self-propelled particles in the large-density regime where passive particles undergo a kinetic arrest to an amorphous glassy state. We capture the competition between self-propulsion and crowding effects using a two-dimensional model of self-propelled hard disks, which we study using Monte Carlo simulations. Although the activity drives the system far from ...
متن کاملSelf-propelled hard disks: implicit alignment and transition to collective motion
We formulate a model of self-propelled hard disks whose dynamics is governed by mutually coupled vectors for velocity and body orientation. Numerical integration at low densities reveals that the expected transition from isotropic to aligned collective motion is present. However, the transition at the Landau meanfield level is strongly first-order, while it is continuous in the Vicsek model. We...
متن کاملHydrodynamic equations for self-propelled particles: microscopic derivation and stability analysis
Considering a gas of self-propelled particles with binary interactions, we derive the hydrodynamic equations governing the density and velocity fields from the microscopic dynamics, in the framework of the associated Boltzmann equation. Explicit expressions for the transport coefficients are given, as a function of the microscopic parameters of the model. We show that the homogeneous state with...
متن کاملCollective Motion of Self-Propelled Particles: Kinetic Phase Transition in One Dimension
We demonstrate that a system of self-propelled particles exhibits spontaneous symmetry breaking and self-organization in one dimension, in contrast with previous analytical predictions. To explain this surprising result we derive a new continuum theory that can account for the development of the symmetry broken state and belongs to the same universality class as the discrete self-propelled part...
متن کاملStabilization of Collective Motion of Self-Propelled Particles
This paper presents analysis and design of feedback control laws for stabilization of parallel and circular trajectories of a network of self-propelled particles. Timescale separation of inter-particle alignment and spacing controls permits application of previous convergence results for oscillator phase synchronization and particle motion.
متن کاملar X iv : 0 70 8 . 24 01 v 1 [ co nd - m at . s of t ] 1 7 A ug 2 00 7 Hydrodynamics of self - propelled hard rods
Motivated by recent simulations and by experiments on aggregation of gliding bacteria, we study a model of the collective dynamics of self-propelled hard rods on a substrate in two dimensions. The rods have finite size, interact via excluded volume and their dynamics is overdamped by the interaction with the substrate. Starting from a microscopic model with non-thermal noise sources, a continuu...
متن کامل